YOU ARE HERE: LAT HomeCollections

Pair Proclaim Nuclear Fusion Breakthrough : Scientists in Utah Say Simple Table-Top Device Produces More Energy Than It Uses in Tests

March 24, 1989|THOMAS H. MAUGH II and LEE DYE | Times Science Writers

SALT LAKE CITY — Two scientists announced Thursday that they have achieved nuclear fusion at room temperature, a breakthrough that if confirmed by other scientific experiments could move the quest for nuclear power into an entirely new arena.

The scientists have produced an incredibly simple, table-top device that they say uses a small electric current to produce slightly more energy than it takes to run the experiment. If they are right, they have reached a goal that has eluded scores of other scientists who have had at their disposal fusion research reactors costing hundreds of millions of dollars.

"The breakthrough means the world may someday rely on fusion for a clean, virtually inexhaustible source of energy," the University of Utah said in a press release announcing the dramatic development.

Unconventional Route

B. Stanley Pons, chairman of the department of chemistry at the University of Utah, and his former professor, Martin Fleischmann, professor of electrochemistry at the University of Southampton, England, announced the results during a press conference on the university campus.

Their work follows a course that is so different from conventional wisdom on fusion research that many of the leaders in the field were not even familiar with it. Others were very skeptical, but several who were aware of the research said it could not be dismissed. The two scientists have been working on the project for more than five years, and they have spent $100,000 of their own money on it.

"We thought the idea was so stupid that we decided to finance it ourselves," Fleischmann said.

Beginning in May, however, the two men will have the support of the U.S. Department of Energy, which said Thursday it will fund their work for 18 months with a grant of $322,000.

Pons and Fleischmann claim to have succeeded where so many others have failed by trying a totally different approach that involves a glass flask and an electrode.

"It's one of those ideas that hasn't occurred to other people," said one Department of Energy scientist who is familiar with the research. "I have no other explanation."

"If it's true, it's wonderful," said Robert Conn, director of the Institute of Plasma and Fusion Research at UCLA. He said, however, "it would be surprising" if the work is confirmed.

That is partly because the physics of fusion is believed to require the presence of extremely high temperatures--millions of degrees--before fusion can occur.

Unlike fission, which releases energy when atoms are split, fusion releases energy when atoms are welded together. Fission is the nuclear reaction in atomic weapons; fusion produced the hydrogen bomb.

A fusion power plant would produce enormous amounts of energy with very little fuel, and it is believed that it would be less hazardous and produce fewer dangerous byproducts than today's fission plants.

The high temperature for a fusion reaction is necessary for positively charged atomic nuclei to have the energy to fuse together in a process that releases enormous amounts of heat.

Fuel Problem

Conventional wisdom also holds that the fuel for a fusion reaction must be extremely compressed, forcing hydrogen atoms close enough together for fusion to occur. In most major research projects, that is done by subjecting the fuel--in the form of a pellet or a dense gas--to either a strong magnetic field or intensely powerful lasers. That is done with huge instruments costing many millions of dollars.

Pons and Fleischmann used none of that, however. Their apparatus consists of a flask about the size and shape of a round-bottomed drinking glass with a fitted glass plug at the top. Inside the flask is a cylinder made of the metal palladium, about six inches long, wrapped in a platinum coil, creating an electrode.

The flask is filled with 99.5% heavy water, which is water made of one part oxygen and two parts deuterium, a form of hydrogen that is about twice as heavy as ordinary hydrogen. Deuterium is the most common fuel for fusion experiments and is easily obtainable from seawater.

A six- to eight-volt current was applied to the apparatus, causing deuterium from the water to concentrate in the palladium. That, in turn, caused the closely packed deuterium atoms to fuse together at room temperature, the scientists said.

"The deuterium is simply driven (from the heavy water) into the metal rod and fused, with a considerable release of energy," Pons said. The energy released from the reaction is in the form of heat.

That amount of heat "can only be accounted for by nuclear reactions," Pons said during the press conference.

The scientists first suspected that they were beginning to get a fusion reaction in their experiment "one day when we turned up the power and the electrode melted," Fleischmann said. "We've been running at much lower power since then."

Furthermore, the byproducts were what one would expect from fusion--neutrons and tritium.

Los Angeles Times Articles