YOU ARE HERE: LAT HomeCollections

'One small step' for man, one massive rocket project for engineers

The young scientists who created the Saturn V rocket that powered Aldrin, Armstrong and Collins to the moon on Apollo 11 in July 1969 were the unsung heroes in the space race with the Soviet Union.

July 19, 2009|John Johnson Jr.

It wasn't a young president's brash promise that enabled Neil Armstrong and Buzz Aldrin to take those first halting steps on the lunar surface 40 years ago Monday. Nor was it the courage of the astronauts themselves.

The success of America's big bet in space depended on the ability of young, unheralded engineers to build rocket engines that were both powerful enough and reliable enough to wrench the spacecraft from Earth's jealous grasp and send it winging to the lunar surface.

The result of their work was the mammoth Saturn V, the largest and most powerful launch vehicle of its time. It was as tall as a 40-story building, with engines that gulped swimming pools worth of fuel every second. Producing 7.5 million pounds of thrust at liftoff, Saturn V was so powerful that during a test at Cape Canaveral, it rained ceiling tiles on the head of CBS news anchor Walter Cronkite, watching from four miles away.

"What set us apart was our ability to build a very big rocket to get us to the moon," said Roger Launius, the Smithsonian Institution's space historian, reflecting on the U.S.' race with the then-Soviet Union to reach the moon first. "The Russians were never able to do that."

Southern California was at the center of this huge technological leap. The rocket that would get us to the moon was composed of three parts, or stages. North American Aviation in Seal Beach built the second stage -- plus the astronauts' command module, scaling up its Downey plant to 25,000 employees to do so. Douglas Aircraft in Huntington Beach made the third stage.

The massive engines that would power each of the stages were the responsibility of Rocketdyne in Canoga Park, then a division of North American Aviation and now managed by Pratt & Whitney. As NASA management fretted that precious time was ticking away, Rocketdyne's engineers battled combustion problems and a dangerously faulty start-up sequence on the first-stage engines, and the failure of two second-stage engines in a key test less than a year before Apollo 11's scheduled launch.

Those engineers were every bit the typical post-war working stiffs. Newly married and raising families, these men set up housekeeping in the fast-growing suburbs of the San Fernando Valley and threw themselves into the work of a lifetime.

"Everybody was young," said Joe Stangeland, a structural specialist who worked on the first-stage F-1 engine. "Anyone over 30 was a veteran. I owned a $13,000 house and spent 16 hours a day working."

Today, those engineers are part of a vanishing generation, the junior members in their 70s.

Stangeland, now 73, and two other Rocketdyne vets who played key roles in the development of the Saturn V -- Bob Biggs, who worked on the F-1, and Paul Coffman, assigned to the second-stage J-2 engine -- recently reflected on the thrill and exhaustion of the moon race.

Space race

The space race was inaugurated in May 1961, when President Kennedy announced that by the end of the decade, the U.S. would land a man on the moon and return him safely to Earth.

It was an audacious gamble. The Soviets held a clear early lead in space. In October 1957, they had launched the first piece of space flotsam, the beeping Sputnik satellite. America's space program had gotten off to a sputtering start with the failure of its first space rocket, Vanguard, dubbed "Flopnik" by a jeering press.

The nation united behind Kennedy's bold gamble, investing $25 billion (about $180 billion in today's dollars) and employing 400,000 workers in 20,000 companies across the United States.

"The Apollo program had a tremendous impact on the United States," Space Foundation Chief Executive Elliot Pulham said in a recent statement. "It built national pride and, more importantly, it influenced a whole generation of children to study hard to become scientists, engineers and astronauts."

The Saturn V design called for five first-stage F-1s to burn kerosene for 2.5 minutes, after which five second-stage J-2 rockets, using a brand-new fuel, liquid hydrogen, would propel the spacecraft to 15,600 miles an hour and an altitude of 109 miles.

The third stage, consisting of a single J-2 engine, was to burn for 2.5 minutes, placing the craft in a parking orbit around the Earth. Several hours later, the engine would ignite again and burn for six more minutes, setting the linked command and lunar modules on course for the moon at 25,000 miles an hour.

Everything about the Saturn V was big, including its appetite. Fueling it required 89 truckloads of liquid oxygen, 28 trailer-loads of liquid hydrogen, and 27 rail cars full of kerosene.

But envisioning a monster like the Saturn V and making it work were two different things. The greatest challenge was the biggest engine, the F-1. Eighteen feet tall and weighing 9 tons, it was designed to be 10 times as powerful as any previous rocket.

"A 10% upgrade is significant in engineering terms," said Biggs, a bearish, bespectacled man of 75. "A factor of 10 puts it in a whole new universe."

Big problems

Los Angeles Times Articles