Advertisement
 
YOU ARE HERE: LAT HomeCollectionsBusiness

Flexible electronic display will get Army field test

The Army this year is expected to receive a working prototype of a device that can be worn by soldiers. Advantages of plastic screens include being lighter and less fragile than glass.

February 21, 2011|By Brandon Bailey

Reporting from San Jose — Later this year, Hewlett-Packard Co. researchers say, they expect to deliver to the U.S. Army a working prototype of what they're calling a Dick Tracy wristwatch — a lightweight, wearable device that soldiers in the field can use to view digital maps and other data on a flexible plastic screen that won't shatter or crack like glass.

Although it will be Spartan by design, researchers say HP's prototype could be one of the first in a wave of products incorporating flexible electronic displays. Freed from the constraints of a rigid-glass screen, designers could one day build flexible plastic displays into clothing, wall coverings and perhaps even e-readers or tablets that can roll up like a newspaper.

"You can start thinking about putting electronic displays on things where you wouldn't ordinarily think of having them," said Nick Colaneri, a scientist and director of the Flexible Display Center at Arizona State University. "How about a stack of thin displays that I can peel off and stick on things, sort of like a pad of Post-It notes?"

Long before those hit the market, however, flexible plastic displays will provide tablets, smart phones and other portable computers with big screens that weigh less and are far more durable than today's models, said Carl Taussig, director of advanced display research at HP Labs in Palo Alto.

"Unlike glass, plastic doesn't break when you drop it on the floor," said Taussig, whose employer has a vested interest in electronic displays as the world's biggest seller of personal computers.

Experts have long predicted a big future for flexible displays. The Defense Department has funded efforts to develop lightweight screens that soldiers can use in hostile environments. A host of computer makers and electronics companies are working on commercial applications.

"We're quite bullish on this market," said Jennifer Colegrove, vice president for emerging technologies at DisplaySearch, an industry research and consulting firm, which estimates that sales of flexible displays will grow from $85 million in 2008 to more than $8 billion in 2018.

But technical issues have made it a long and sometimes frustrating quest. Plastic Logic Ltd. of Mountain View, Calif., showed off a prototype e-reader with a flexible display last year, dubbed the Que, only to announce later that its commercial release would be delayed indefinitely.

Standard components for liquid crystal displays, used in most portable computers today, generally require a rigid glass to keep images from being distorted. Traditional displays also depend on transistors that are embedded in glass through processes that involve temperatures high enough to melt or distort plastic.

Taussig's team at HP, however, is working with plastic film that is both lighter and thinner than glass, and which can be stored in rolls. Their method resembles, in a sense, the way newspapers are printed from giant spools of paper.

The process starts with rolls of plastic that have been treated with thin layers of metal and other material. The plastic is run through a press that imprints a microscopic, three-dimensional pattern, which can then be etched to create transistors on the film. These can transmit instructions to electrically charged particles or diodes contained in a second layer of plastic, which then displays text or images.

Although it's not yet ready for commercial use, Taussig said he's convinced the roll process can be far cheaper than current "batch" methods used for making glass displays, which require vast clean rooms and precision robotics to keep each pane from being damaged in production.

Other groups in Taiwan and elsewhere are developing manufacturing processes in which layers of transistors are laid down on sheets of plastic temporarily bonded to a pane of glass. Colaneri said display manufacturers could adopt that approach while using much of their existing equipment.

But eventually, Colegrove said, HP's roll approach may be a less-expensive process for making flexible screens in large volume. Currently, she added, the cost of the glass display might be $30 to $40 for a typical e-reader such as the Amazon Kindle that sells for $139.

The prototype that HP is building for the Army also takes advantage of low-power features associated with E Ink, the technology used in most e-readers. As a result, Taussig said the device will be able to run on the power from a small, flexible solar panel that can be part of the wristband.

E Ink uses black and white particles with opposite electrical charges, floating in tiny capsules of liquid. Electrical signals cause the particles to form a pattern of letters, words or other images. The display requires little power because it has no backlighting and uses electricity only to create a new page.

Advertisement
Los Angeles Times Articles
|
|
|