Advertisement
 
YOU ARE HERE: LAT HomeCollectionsBusiness

The space shuttle's Southland legacy

The space shuttle program helped carry Southern California's aerospace industry for four decades, bequeathing new aeronautical technology — and jobs — to the local economy.

July 05, 2011|By W.J. Hennigan, Los Angeles Times
  • The space shuttle Enterprise, a test orbitor that never flew into space, is carried by a 747 as takes off for its final test at Edwards Air Force Base on Oct. 27, 1977.
The space shuttle Enterprise, a test orbitor that never flew into space,… (Joe Kennedy, Los Angeles…)

Bob Kahl slips in through a side door of the vast, abandoned hangar and looks at what's left of the assembly plant where he worked for nearly 40 years.

He remembers the hum of power tools, the biting aroma of cutting oil, swarms of workers plugging away on a labyrinth of yellow scaffolding. All that's left is a few piles of broken concrete and a sea of colorless dust that coats a Palmdale factory floor the size of two football fields.

"Welcome to the birthplace of America's space shuttle fleet," said Kahl, 60, smiling. "I never really thought it could come to this."

Photos: The shuttle's legacy in Southern California

Amid the odes to a shuttle program that ends with the last mission of the last shuttle, Atlantis, scheduled for liftoff Friday, is an awareness that the space plane helped carry Southern California's aerospace industry for four decades. It staved off decline after the end of the moon landings, bequeathing new generations of aeronautical technology — and jobs — to the regional economy.

"Building the space shuttle fleet enabled a historic chapter in NASA's space program," said NASA Administrator Charles Bolden, a former shuttle commander. "Southern California has a strong place in shuttle history as a key site where the spacecraft were built and often landed."

Constructing the shuttle fleet was testament to how advanced Southern California's aerospace engineering and labor workforce had become by the 1970s — and assured that the vast assemblage of brainpower and engineering know-how would not be lost in the Southland.

The history of the shuttle program may be linked forever to the flights of Challenger and Columbia, its two deadly tragedies. But the shuttle era will also be remembered for advancing technology, including reusable rocket engines and computerized guidance systems, that changed manned flight.

The shuttle is considered the world's most advanced flying machine because it blasted into space like a rocket, behaved in orbit like a floating laboratory, buzzed to and from the International Space Station with astronauts and supplies, and landed back on a runway like an airplane.

Before the shuttle, astronauts reached space by squeezing into a small capsule launched atop a massive rocket. By the time the shuttle was in design, the space program was looking for ways to keep as many as seven astronauts in orbit for weeks at a time in relative comfort.

To do this, scientists and engineers had to rethink nearly every aspect of the endeavor, notably flight controls, rocket engines and protection from searing heat generated by reentry.

"The shuttle was unlike anything that preceded it, so there were always new questions to answer," said Dwight Woolhouse, a shuttle engineer from the beginning of the program to this day.

The shuttle — large and aerodynamically unstable — needed sophisticated computer controls to guide the flight. The system, known as "fly by wire," is common on today's aircraft, but it was a rarity in flying machines in the 1970s. Engineers in Downey developed the computer-aided autopilot flight controls similar to today's systems that allow mammoth Boeing 747 jumbo jets to almost fly themselves.

Another challenge was building rocket engines sturdy enough to work flight after flight for 55 missions. Before the shuttle, rocket engines were mostly one-of-a-kind chemistry sets — good for one flight only. The main engines, made by Rocketdyne in Canoga Park, helped propel the 2,250-ton shuttle assembly as high as 384 miles above Earth.

"We were wrestling with the technology at the time," said Robert Biggs, project engineer at Rocketdyne. "We had about 20 major accidents, but we finally got it right."

To keep the shuttle from burning up in the furnace-like heat upon reentry, new protection was developed. More than 30,000 silica ceramic tiles were individually contoured to the spaceship's body — like a jigsaw puzzle — dissipating heat around 2,300 degrees. The tiles, made by Lockheed Missiles & Space Co. in Sunnyvale, Calif., were key to the reusability of the shuttle.

Combined, the new technology would make space travel routine. There were 358 astronauts who reached outer space on the shuttle, whereas only 43 had gone before. The shuttle helped build the International Space Station, launched and later fixed the Hubble Space Telescope, and sent robotic probes to explore Venus, Jupiter and the sun.

During World War II, aircraft manufacturing boomed in California, with factories churning out war birds around the clock. After the war came to a close, the industry evolved from one centered around airplane manufacturing into one of cutting-edge engineering, groundbreaking science and high technology.

"Once the DNA code in aviation and aerospace was established in Southern California, it was unbreakable," Kevin Starr, a historian, author and USC professor, said in an interview.

Advertisement
Los Angeles Times Articles
|
|
|